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Variational Analysis of the Dielectric Rib
Waveguide Using the Concept of
“Transition Function” and Including

Edge Singularities
T, Rozzi, Fe&v, IEEE, Graziano Cerri, M, N, Husain, and Leonardo Zappelli

Abstract—Dielectric rib wavegoide, being a key transmission medium
in millimetrics and inte@ated optics, bas been the object of extensive
investigation. Although various approximate analyses of the EDC type
exist, these break down for many practical configurations. More com-
plete transverse resonance formulatiosr~ also exist, but if accuracy is
required, they involve mode matching, with a partially discrete, partially
continuous spectnsm. Whereas finite difference (finite element) numeri-
cal solutions are accurate, they are also expensive and their extension to
more, complex structures is correspondingly difficult.

In this contribution, we focus on the pure LSE/LSM cases. We derive
a highly accurate transverse resonance diffraction variational solution
of the problem, of order 1 (a scalar dispersion equation), by assuming at
the transverse step discontinuity a single function “trial field” which
incorporates the physical properties of the solution. This is, in fact, the
surface wave mode of a slab waveguide of height intermediate between
that of the rib and that of the cladding, slab, including dielectric edge
singularities in the LSM case. The height of the “intermediate guide” is
obtained by optimizing the overlapping integral with the slab mode in
the rib and in the cladding. This criterion turns out to be equivalent
to choosing an intermediate guide whose EDC is the geometric mean of
those of the rib and cladding. Numerical results are in excellent agree-
ment with those obtained by finite difference, even at cutoff, where the
EDC fails and most methods tend to overestimate the value of &

I. INTRODUCTION

R IB waveguide is the most commonly encountered type
of waveguide in integrated optics, with likely application

to the higher millimetric region. It has, therefore, been the
object of much investigation in recent years. Accurate results
for the single rib guide have been obtained by purely numeri-
cal methods such as finite difference (finite elements) [11.

These are very expensive in computer time, however, and
extension to more complicated structures seems correspond-
ingly difficult. Approximate and quasi-analytical methods
have also been employed.

For some year%, the effective dielectric constant (EDC) in
various forms has been the accepted approximation method
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Fig. 1. Geometry of the rib waveguide.

for the study of waveguides in millimetric and integrated
optics [2], [31. In spite of its simplicity and ease of implemen-
tation, its limits are now well appreciated. In 1981 transverse
resonance and network methods were combined in studying
dielectric guides [4], [5]. In 1984 the image guide problem
was approached by transverse resonance diffraction (TRD)
[6]. Since then, transverse resonance has been formulated for
the rib guide in approximate form [7] and in more rigorous
hybrid form [8] by using mode matching at the transverse
step discontinuity (x = O in Fig. 1). In these approaches, the
problem is seen as one of diffraction by a transverse step
discontinuity, whereupon transverse resonance is employed
to derive the propagation constant.

As in a longitudinal step discontinuity problem, direct
mode matching does not take into account the true diffrac-
tion field at the step and suffers from well-known drawbacks,
~articularly when a continuum is involved. This problem is
not too serious in the LSE case, where the field is regular at
the transverse step discontinuity. Correspondingly, all rigor-
ous methods tend to yield more or less accurate values of the
propagation constant. It is, however, more serious in the
LSM case. For both polarizations, 90” and 270° dielectric
corners are at the root of the nonseparability of the problem.
In the LSM case in particular, they have an important effect
on the field distribution at the plane of the transverse step
(see Fig. 4). This aspect has received little attention but is,
however, the key to an efficient solution.

In this contribution we shall derive a TRD solution of the
rib in the pure LSE/LSM polarizations. It is recognized that
the corners above cause the field to be essentially hybrid.
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However, for typical aspect ratios and low refractive index
differences, the hybrid content is minor, while the effect of
nonseparability (and singularity) of the field is a more domi-
nant feature. Moreover, restricting attention to the case of
pure polarization introduces a great simplification in the
analysis. This simplification is easily removed where re-
quired.

In solving the TRD problem, we will adopt a variational
formulation of the Rayleigh–Ritz type, i.e., one where we
adopt a single function trial field at the transverse step
discontinuity, including all known physical features of the
discontinuity. The choice of a single function trial field is
critical. For instance, using just the surface mode to the right
or left of the step is inaccurate because of its orthogonality
to the continuum.

A very convenient choice turns out to be the modal distri-
bution of a slab of height intermediate between those of the
rib and of the cladding layer, which we define as a transition
function. In the LSM case we include explicitly the proper
singularity of the E field at the corners. As a consequence of
the above prudent choice, it is possible to recover a scalar
dispersion equation yielding results for the propagation con-
stants and discontinuity fields which are at least as accurate
as those obtained by purely numerical methods, but with a
fraction of the required computer power\ time. It is also
noted that the simple two-port transverse equivalent network
deriving from a single function trial field is a useful feature
with a view to extensions to more complex structures.

II. EVEN (TO x) LSE ANALYSIS

The analysis starts from a knowledge of the complete
spectrum of an asymmetric slab waveguide in the y direction,
which includes the following.

1) Surface waves, of orthonormalized distribution P,(y).
2) Air modes, of distribution q( y, p), where p is a contin-

uous wave number O < p <~. Both so-called even and
odd waves must be included in view of the lack of
symmetry of the problem in the y direction. Where
necessary, these will be distinguished by the notation

9P: P = even, odd.
3) Substrate waves, p,b(y, m), O < cr < u = (=2 – l)li2k0.

The spectral expression of the y-directed Hertzian potential
Th( x, y) at each side of the step comprises all the above
cent ribut ions.

E= and HY constitute a pair of transverse fields at the
discontinuous interface x = O. At each side of the step, these
are derived from the potential as

Ez(x, y)=jqLoL3JTh(x, y) HY=(+k;+ ~;)mk(x, y).

(1)

Upon use of spectral expression of the potential in (1), it is
possible to obtain an integral relationship of the type

E=(O, y) = ~L. HY(O, y) (2)

where the kernel Z~( y, y‘) of the integral operator ~~ is

given by the impedance Green’s function:

1

I

q, tan q,a
.ZL(Y, Y’)=- – 9S(Y)9S( Y’)

j6.)E~ ‘e

tanh ya
+ $ ~wdp y

,()

29Y(Y$P)PW(Y’7P)

1– ‘;
o

$

q tanh ~a
+ ‘du
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&

I

,Psb(Y>~)Psb(Y’>~) (3)
o

‘2 – k.

where f denotes pririci~al value. The wavenumber for bound
mode in x is given by

In (3), we have implicitly assumed that just one surface
wave (in Y), P$ Y), may be supported by the slab waveguide
left of the step. A relationship analogous to (2) exists at the
right-hand side of the step, namely,

where the Green’s
gous to (3), after
region, namely,

– EZ(O, y) =&H V((),y)

1
zR(y, y’)=—

jueo

(4)

impedance Z~( y, y‘) has a form analo-
due modification for the semi-infinite

I:*,(Y)+,(Y’)

+ : fdp y

()

,++(Y>P)*w(Y’P)

1– ;
o

/
‘du

~
+
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~ 2hb(y>a)kb(y’>~) (5)
o

()
E2— —

k.

where q: = – jy; corresponds to q,, e; to ,c~, and $ to q in
the region x >0. With reference to Fig. 1, it is noted that

V(Y) has the same form as P(Y), where the appropriate
wavem.imbers and “d” instead of “D” are used.

The continuity of the fields has been built into (2) and (4).
By adding them, we obtain the dispersion equation of the
waveguide in the form of an integral equation:

~. HV(O, y)=O (6)

“Variational” Solution

In the course of a variational development, when choosing
expanding functions for the unknown field H(y) = HY(O, y),
it is very advantageous to be able to capture most of the
solution with just one term, i.e., a first-order solution. The
discussion of the above section seems to suggest that a
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prudent choice for H may consist in taking th~ surface wave,
u ,, of a slab waveguide with core height d intermediate
between d and D (“transition function”):

For small steps, there would be little difference between
the spectra of the three guides; for larger $teps, it seems
intuitively reasonable that an intermeiliate waveguide with
EDC ;, = ~ may provide a suitable “transition” be-
tween the two waveguides.

More precisely, the transition ftinction u, overlaps the
spectra of both slabs. We seek to optimize the overlap with

q, and V,, where t~~ latter exists, as the surface ~aves carry
most of the power. Consequently, we choose d so as to
minimize the error function:

6(J)=2–(P.2+P:2)>0.

As it turns out, ~ resulting from this condition is but little
different from tha~ corresponding to F. ‘m.

It is noted that for d/D sufficiently small, no guidance is
present in the cladding slab and the above criterion breaks
down. From this point onward we extrapolate for ~ as a
function of d.

The evaluation of the overlapping integrals P and P:
between u, and the spectra to either side of the step is
facilitated by the following result, which is a particular case
of a much more general theorem for calculating the overlap-
ping of two solutions of the wave equation. In particular, we
have

2= z . .

n

Fig. 2. Equivalent network for the LSE case.

Fig. 3. Equivalent network for the LSM case.

TABLE I
TYPICAL VALUES OF THE ORDER OF THE ,!iiNGuMiRITy NEAR

ADIELECTRICWEDGEOFAPERTURE9 = rr /2, 3r /2

1 Ci–l
a=:cos-’(– —2&i+l)-’

i 0
2 –0.107

.3 –0.161
5 – 0.216

IQ – 0.268
11.8336 – 0.277

.20 – 0.299
100 – 0.326

i) The impedance of the surface wave ,under the rib,
represented by a short-circuited trattsmission line of
electrical length q~a and characteristic impedance

%/~e.

and similarly for the remaining overlapping integrals P(p)
and P,b(a ) with air and substrate modes respectively.

Let us assume the sdlution H(y) of (6) to be known and ii) The impedance’ of the air modes at both sides of the
multiply this equation on the left by H(y), integrate over y,
and divide across by

[

,,

1
2 iii)

(q,, iY)2= ~~~p,(y)ll(y)dy .

Isolate then from Z~, as given in (3), and from Z~, given in iv)

(5), the contributions of the s~rface waves at each side. The
following scalar dispersion equation then results:

(7)

junction as seen by the above surface wave, given by

La.
The contribution of the substrate modes at both sides
of the junction as seen by the surface wave under the
rib; given by z~b.
The ecmtribution of the surface wave mode (if any), to
the right of the junction, i.e. a load of impedance
l~jh~O y~/ ●: with real y; for a bound mode in the x
direction. This load is seen by the surface, wave mode
under the rib through an ideal transformer:

(9)where

dp
Za=w=;>o]m

()

z [ytanh(ya)P~(p) +YP;2(P)] The representation given by (7) is quantitatively exact and

01–: enjoys variational properties. Although its accuracy depends
o on an actual knowledge of H, it is noted that H, being

1 u du transverse to the dielectric wedge along the z axis, is nonsin-
z~b = —

J ~ 2 [@anh(WOp:(~)+ @’(:(~)]. gular [9]. Hence, any reasonable assumption will lead to
C2 o

()
1– —

relatively good results.

qko If, at thi$ point, the small-step approximation is made:

(8) 4’$=*S=H

Its transverse equivalent network interpretation is illustrated then, by orthogonality, the contributions of air and substrate
in Fig.2. In (8) and in this figure one recognizes four modes vanish; i.e., Z. = Z,b = O and n = 1 in (7) and we are
contributions (all within a common factor 1/ jo co): reduced to the EDC calculation.
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Fig. 4. EV component of the fundamental LSM mode for slab of heights d (cuwe A), d (cume B), and D (cume D)
compared with the trial field of the transition function (curve C).

It is worth remarking that even when the step is not small,
so that q~ and ~, may differ from each other and from H, P,
and P; of (9) are both less than unity and their ratio is still
fairly close to unity. This fact explains the remarkable accu-
racy of the EDC calculation in the LSE case not too close to
cutoff, where the continuous spectra can no longer be over-
looked. The above observation is at the basis of a very
accurate first-order variational solution of the step problem.

III. EVEN LSM MODES

The even LSM modes (TM to y) of the rib waveguide are
obtained by placing a magnetic wall on the plane of symme-
try x = – a, by means of the Hertzian electric potential

~e(x, y). The pair of fields, transverse to x, to be used in the

analysis are Ey and HZ and these are derived from the
potential as

EY = (e,k; +@ve(x>Y) Hz=j@6dxTre(x, y).

(lo)

By a development analogous to that of Section II, we arrive
at the integral equation for the unknown EY field at the
interface x = O:

~EY(O, y) = O (11)

where

1

[

q, tan q$a
Y(y, y’)=- –

]apo PS(Y)$’$( Y’)
‘e

1+v+,(y)+,(y’)+ya(y,y’)+~b(y,y’)(12)
E:

and

Y
Y.(Y, Y’) =pP

()
,[tanh(ya)q(y, p)p(y’, p)

1– ;
o

+*( YjP)o(Y’, P)l

T
y,b(y, y’) = $~uda

()

2

1– ~
~2k0

(13a)

[tanh(qa)q,h(y, p)qs~(y ’,p)

‘kb(y>~)+sb(i, ~)]. (13b)

Again, by a development similar to that of Section II, one
deduces the scalar dispersion equation

(14)

corresponding to the transverse equivalent circuits of Fig. 3,
which is the dual of Fig. 2. In the above equation (14), Y.,
y~b, and n2 are defined analogously to (8) and (9), respec-
tively, in terms now of the unknown transverse electric field
at the interface EY(O,y) - E(y) and of the wavenumbers
appropriate to the TM case, It is noted, however, that in
contrast to the LSE case, E transverse to a dielectric wedge
is singular [9]. Hence, y = d and y = D are singular pbints,
as further discussed in the following section, and an appro-
priate choice of E has more bearing on the accuracy of
solution,

The second feature of (14) is, in fact, its close resemblance
to (7), which is a dispersion equation for a TM line in x.
According to the standard EDC procedure, however, the
transmission line representing propagation in the x direction
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TABLE II
PARAMETERSOFTHESEMICONDUCTORRIB WAVEGUIDESTRUCTURES

WHICH HAVE BEENANALYZED

Rib Guide
Structure nl nz n3 D (~m) d (~m) 2a (pm) A (#m)

1 3.44 3.35 1.0 1 varying 3 1.15
2 3.44 3.40 1.0 1 varying 3 1.15
3 3.44 3.34 1.0 1.3 0.2 2 1.55
4 3.44 3.36 1.0 1 0.9 3 1.55
5 3.44 3.435 1.0 6 3.5 4 1.55
6 3.4406 3.4145 1.0 1.5 varying , 3 1.15

TABLE III
COMPARISONOFMODE INDICESFORSTRUCTURE1

TRD Without
d EDC Continuum TRD with Continuum Finite Element [12]

0.1 — 3.406332986899 0.62282131 3.40693
0.2 — — 3.40645317’7728 0.62416126 3.40708
0.3 — — 3,406715746213 0.62708867 3.40725
0.32 3.407806396 3.40642431
0.4 3.407890320 3.40773878 3.406976578049 0.62999694 3.40746
0.5 3.408093452 3.40807870 3.407276081276 0.63333667 3.40770
0.6 3.408359528 3.40835496 3.407684950229 0.63789640 3.40808
0.7 3.408695221 3.40869350 3.408164053097 0.64324008 3.40856
0.8 3.409144402 3.40914510 3.408818491485 0.65054058 3.40914
0.9 3.409839630 3.40984019 3.409724754287 0.66065259 2.40979

for an LSM mode ought to be of the pure TE type. This
apparent incongruity is explained by noting that in the EDC
approximation one uses a separable potential of the type
f(y)e-’ktx in each region. Then, one has

Only if kY = O or the identification ~r(y) = ~, can be made is
the characteristic admittance of a TE wave recovered from
the above equation. It is, therefore, fair to say that while in
the LSE case the EDC is the most basic level of approxima-
tion to the rigorous dispersion equation as obtained from
transverse resonance diffraction, in the LSM case stronger
approximations are required. It is consequently to be ex-
pected that the EDC approximation in the LSM case will be
further removed from the accurate solution than in the LSE
case.

Edge Singularities: Fimt-Order Variational Solution for Ev

We shall now rigorously solve integral equation (11) by
means of a first-order variational approach, taking into ac-
count the proper singularities of the transverse electric field
at the dielectric corners y = D and y = d of Fig. 1. It is well
known [9] that the transverse fields at a dielectric wedge of
aperture o between dielectrics .sI and 1 are singular like r a,
where r is the distance from the wedge and a( – 1< a < O) is
given by the lowest eigenvalue of the transcendental equa-
tion

sin[(a+l)7r]* ~sin[(a+l)(d– ~)].

3.418 ,

3.411 1 1
0.2 0.4 0.6 0.8 1

d pm

Fig. 5. Normalized propagation constant for the fundamental LSE
mode as a function of cladding height. nl = 3.44; n2 = 3.40; n~ = 1.0;
A = 1.15 pm; 2a= 3 Wrn —present analysis; A VFEM analysis (ref [1])
X SVFDM analysis(ref. [13]).

For f3=~/2 (corner Y=D of Fig. 1) and 0=3w/2 (y=d)
the order of the singularity is the same and is given by

2

()

l.Z– I
~=—cos–l –— –1.

v 2e~+l



252 IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES, VOL. 39,NO. 2, FEBRUARY 1991

TABLE IV
COMPARISONOFMODEINDICESFORSTRUCTURES3, 4 AND5

Finite Element/Difference

EDC TRD Analysis [14] [13]
Rib Guide Technique (Present Analysis) FD(l) FD(2)

Structure ~/k,, 3.390322368 3.388690 3.3906177 3.3912917 3.3869266

3 ~1 0.4832477 0.5025 0.5092 0.4655926

Structure ~/k. 3.395478249 3.3953275 3.3951666 3.3954298 3.3954405

4 L) 0.4386987 0.4367 0.4400 0.4401

Structure ~/k. 3.437327385 3.4368203 3.4368425 3.4368635 3.4368112

5 u 0.3638981 0.3683 0.3725 0.3621

Fig. 6. Hy and El field components of the fundamental LSE mode plotted as the magnitude values over transverse guide
section.

Typical values of a are reported in Table I. For El= 10,
~ = – 0.2g, which is a nonnegligible singularity. The typical

shape of the true diffraction field at the interface x = O k the

type shown qualitatively in Fig. 4.

Also, a finite jump takes place at the dielectric interface
Y = 0, common to both sides of the step. In order to obtain
an accurate variational expression of the lowest possible
order, all the above features ought to be built into the trial
field.

We used two forms of the trial field involving a transition
function where the value of ~ is determined as for the LSE
case. The first was of the type of a product of a TM
transition function, =./ e,, times a term describing the singu-
larity, namely

=s(Y) ( K
E(Y) =EY(O, Y)=m 1+

)lY-dHy-m (15)

where K is a variational parameter that minimizes the func-
tional (see (12)):

Y=(E, fE)

In view of the relatively complicated nature of (15), the
scalar products required in (16), such as

()

p,= ~,E
Cp

need to be evaluated numerically. The above choice (15),
however, produces accurate results, which are discussed in
the following section,
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TABLE V
COMPARISONOFMODAL INDICESFORTHELSM CASEOFSTRUCTURE2

Present Analysis Present Analysis Finite Difference
With Singularity Without Singularity Method [13] EDC Technique

d ~/k. ~/k. f3/ko f3/ko
~m Using Eq. (15) Using Eq. (17)

0.1
().2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

3.410202528445
3.410288256175
3.410457938360
3.410678050156
3.410963039520
3.412174130192
3.412472296772
3.412978578792
3.413801442506

3.4102127
3.4102402
3.4102597
3.4107675
3.4112158
3.4118191
3.4121408
3.4128545
3.4135775

3.410083534325
3.410091441092
3.410119617058
3.410268973640
3.410925733227
3.411380321540
3.411476035071
3.412496513103
3.413784847349

3.41060
3.41073
3.41092
3.41117
3.41150
3.41190
3.41241
3.41303
3.41385

3.412707329
3.412928581
3.413308144
3.413937569

TABLE VI
COMPARISONOFMODALINDICESFOR LSM ANALYSISOFSTRUCTURE6

TRD Analysis (Present Analysis) TRD Analysis (Present Analysis)
with Singularity Without Singularity EDC

d ~/k. ~/k. ~/kQ
~m Eq. (15) Eq. (17)

0.1 3.423002125351 3.4230844 3.422931208
(),2 3.423002226451 3.4231136 3.42293372
0.3 3.423003228562 3.4233329 3.42293647
0.4 3.423073140853 3.4234474 3.42296027
0.5 3.423218060410 3.4235177 3.42304718 —
0.6 3.423488390139 3.4237593 3.42312348 —
0.7 3.423981395150 3.4239557 3.42316368 —
0.8 3.425114321485 3.4243814 3.42318807 3.42567790
0.9 3.425136486940 3.4244065 3.42321265 3.425839424
1.0 3.425393083153 3.4247512 3.42340634 3.426036835
1.1 3.425747334405 3.4252561 3.42390088 3.42627814
1.2 3.426220821181 3.4257251 3.42506294 3.426573753
1.3 3.426766377948 3.426515 3.42646813 3.426946640
1.4 3.427404668557 3.4272225 3.42739956 3.427455902

In order to avoid the above inconvenience also realizing
that the effect of each singularity in this problem is well
localized to a small neighborhood of the singular corner
itself, we used a second trial field, given by

E,= ~.-~”cy-z)(y - ~)a, y>D

I _cos(iyy-i)(y_d)a D-z a——;ACOS(ZYCG Lj) ()~–d ‘

where

—

tan~=g~.
ez ky

We note, in fact, that the above form (17) takes into account
each of the two singularities at y = d, D one at a time and
includes the dielectric jump at y = O.

Moreover, it is physically clear that no other discontinuity
occurs between the two singularities at y = d, D. Hence, we
assume a continuous function in this interval. For y > D, we
include the effect of the singularity of y = D, whereas the
dielectric constant is that of the “air region” above the rib.

The shape of the trial field (17) is compared in Fig. 4 with
those of the slab mode in the rib, that of the cladding region,
and that of the transition function GS/ G, without inclusion
of the singularities for a typical cross section. From the
above figure, we note the nonnegligible, but well localized,
effects of the two singularities, whereas iis / e, is seen. to
have features intermediate between those of p, and ~,,
according to the very concept of transition function,

The advantage of expression (17) with respect to (15) lies
in that fact that scalar products such as P, can be cast
analytically (see the Appendix) in terms of incomplete gamma
functions. The latter are straightforward to evaluate numeri-
cally in rapidly converging series form. For large values of
the argument, in fact, the series reduces to a’ single” term.
This analyticity of the “scalar products” results in far greater
numerical efficiency of the latter trial field, although the
actual values of the propagation constants obtained in the
two cases are very similar.

IV. NUMERICAL RESULTS

To demonstrate the application of the theory developed in
the previous section and the effectiveness of the concept of
the transition function, we investigated the propagation
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Fig. 9.

modes of a rib

Table II.

A. J!,S~ Case

\

EY field components of the fundamental LSM mode plotted as the magnitude values over transverse guide section

guide whose parameters are illustrated in

In Table III, we report results of modal indices for struc-
ture 1 where the thickness of the rib (D) is kept constant

while that of the cladding layer d is varied from 0.1 to 0.9.

Results obtained by the standard EDC are given in column 2
and compared with those obtained by the above analysis,
column 3, but neglecting the effect of the continuum at
either side. It is noted that the EDC approximation, as well

as that of neglecting the continuum, breaks down for d <0.3
~m. Column 4 reports present results valid for any value of
d. These are compared with column 6, the values obtained in
[12] by finite element analysis, for varying values of d.

For a slightly different structure (structure 2), nz = 3.40,
our results are compared with those of the semivectorial
FDM analysis [13] and those of vectorial FEM [1] in Fig. 5.
Differences, even for large steps, are seen to be minimal.
The present results, however, were obtained with a relatively
modest computer power effort, typically a minute or two on
a mainframe. Had the appropriate library routines been
available, even a desktop would have been adequate to the
task.
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Results on three additional guiding structures (structures
3,4, 5), given in Table IV, are found to be in excellent
agreement with those of [13] and [14], obtained using the
finite element method. Fig. 6 gives a 3-D plot of HY and Ex.
Ex is not directly involved in the solution of the integral
equation but is theoretically singular at x = O, y = D. Having
assumed a nonsingular test function HY, this feature does
not appear. The figure shows, however, the proper disconti-
nuity on the side of the rib at x = O.

B. LSM Case

The LSM case is complicated by the presence of the
singularities, as discussed in the previous sections. A compar-
ison between the results obtained using the two trial fields
discussed in the previous section for structures 2 and 6 is
reported in Tables V and VI respectively. Differences are
seen to be minimal, but using the second form is consider-
ably more economical in computer time, as anticipated. Fig.
7 shows the variation of normalized modal indices with rib
width for the fundamental LSM mode for three different rib
heights. Fig. 8 shows the variation of normalized modal
indices for the fundamental LSM mode with rib height for
different rib widths. The accuracy of the method is validated
by comparing the results with the results of [13] in Table V,
where differences are seen to be minimal. Our results in Fig.
7 are also in close agreement with the results presented in
[1]. This confirms the assertion made in the introduction that
for aspect ratios not too close to unity, the singular behavior
near the corner, not the hybrid nature of the field, is the
dominant feature of the problem. Finally, a 3-D plot of the
EY field component is provided in Fig. 9, where the presence
of the singularity is clearly visible.

V. CONCLUSIONS

In this paper, we present a semianalytical treatment of the
LSE/LSM polarized rib waveguide based on a variational
treatment of the transverse step discontinuity problem of the
Rayleigh–Ritz type (a single function trial field) and trans-
verse resonance (transverse resonance diffraction). All known
relevant features of the solution are incorporated in the trial
field, yielding highly accurate numerical results with modest
computer effort. Moreover, a scalar, analytical dispersion
equation is recovered which offers some insight and allows
extension to more complicated transverse cross sections.

APPENDIX

In order to give the expressions of P, P’ 0... for the sake
of convenience it is necessary to define the following quanti-
ties:

Xcos q A
c= –- B=

cos(Kyd–~) COS ( hD – @

A COS ~ ~ = ACcos(hD–~e)
c=

cos(hD–7) e Cos a ~
—

Cos a~~
Ce=AeZ A,=& B,=&—

COS ~~be
Cos a ~b

c,=& — cos(hD – ~,b).
COS ~~b

A’, B’, C’, A:, B:, C;, AL, B;, and C; are relative to the slab
of height d and are similar to the unprimed values. If the
following functions are also defined:

F1(q, &,d, h)=~{cos(q +<). CP(d, O,h+kY)

–sin(q + <). S&(d, O,h +~v)

+cos(q– <). Cp(d, O,h–~v)

FJ@, h) =cos(ij -hD). CP(D-~, –~O, h)

F4(at,p)=cos[at +p(D–d)] ”C&(d–d,–yo,p)

+sin[a, +p(D–d)] #SP(D–d, –yO, p)

the Fourier coefficients of the field expansion can be written:

C . ~.I’d”
P,=

E2’(~2+a)

The wavenumber h, p, u and the phase shift @ are referred
to the TM fundamental mode of the slab of height D.

–sina,” HP(~o, p)]}.

The wavenumber h, u, p and the phase shifts a., at, and p.
are referred to the TM even continuous air spectrum of the
slab of height D.

Pa(p), relative to the TM odd continuous air spectrum, is
obtained by replacing a,, ~,, at with a. + m/2, FO + T/2,

at + m-/2, respectively.
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The wavenumber u,,h, p and the phase shifts a,~ and ~,b are

referred to the TM continuous substrate spectrum of the

slab of height D:

+ At. @70+@D+@+70d.

[
:C,(D-Z,-(YO+P),O)

1+EM(yo+p, o) .

The wavenumbers h, p, a are referred to the TM fundamen-
tal mode of the slab of height d:

+cos[p(D –d)+a, ]EW(70>p)

)
–sin[p(D –d)+crf]. HW(70, ~) ~

The wavenitmber h, u, p and the phase shifts ae, a,. and PC
are referred to the continuous TM even air spectrum of the
slab of the height d.

P~(p), relative, to the TM odd continuous air spectrum, is

obtained by replacing LYe,~C, a, with a. + T/2, ~. + z-/2,

af + T/2, respectively:

r2
+ —e –(P+y,,)D+#+7,d, c,

s
m-

“[;CP(D–J,–(P+70),0)

1+Ep(p+yo, o) .

The wavenumber U, h, p and the phase shift a,b are referred

to the TM continuous substrate spectrum of the slab of

height d.
The functions C&(LL,B,8) and S&(LL,~, 8) (p = 1 + a) are

combinations of incomplete gamma functions [10, ch. 3.94

and ch. 8.35], which, in series representation, can be written

~, in the asymptotic formand, for large values of ZL /?2 + ~2

(1C;(u, p,8) = r(W)(p2 + 132)-P’2COS ~arctan ~ – u~e-pz’

[
~f_l (-l) ’nr(l–p+m)COs (m+l)arctan~+8u

“E
1

m=o r(l-p)(24-J~jm+’ ~

S&(p, P, u) is obtained from CM by replacing Uw and cos (” )
with – up and sin(~), respectively, and S:(U, B, 8) from the
corresponding C: by replacing cos ( ) with sin(~). Hw(~, 8)
and EW(~, S) are given by [10, ch. 3.944.5 and 6].
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