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Variational Analysis of the Dielectric Rib
Waveguide Using the Concept of
“Transition Function” and Including
- Edge Singularities

T. Rozzi, Fellow, IEEE, Graziano Cerri, M. N. Husain, and Leonardo Zappelli

Abstract —Dielectric rib waveguide, being a key transmission medium
in millimetrics and integrated optics, has been the object of extensive
investigation. Although various approximate analyses of the EDC type
exist, these break down for many practical configurations. More com-
plete transverse resonance formulations also exist, but if accuracy is
required, they involve mode matching, with a partially discrete, partially
continuous spectrum. Whereas finite difference (finite element) numeri-
cal solutions are accurate, they are also expensive and their extension to
more, complex structures is correspondingly difficult.

In this contribution, we focus on the pure LSE /LSM cases. We derive
a highly accurate transverse resonance diffraction variational solution
of the problem, of order 1 (a scalar dispersion equation), by assuming at
the transverse step discontinuity a single function “trial field” which
incorporates the physical properties of the solution. This is, in fact, the
surface wave mode of a slab waveguide of height intermediate between
that of the rib and that of the cladding slab, including dielectric edge
singularities in the LSM case. The height of the “intermediate guide” is
obtained by optimizing the overlapping integral with the slab mode in
the rib and in the cladding. This criterion turns out to be equivalent
to choosing an intermediate gnide whose EDC is the geometric mean of
those of the rib and cladding. Numerical results are in excellent agree-
ment with those obtained by finite difference, even at cutoff, where the
EDC fails and most methods tend to overestimate the value of .

- I. INTRODUCTION

IB waveguide is the most commonly encountered type
of waveguide in integrated optics, with likely application
to the higher millimetric tegion. It has, therefore, been the
object of much investigation in recent years. Accurate results
for the single rib guide have been obtained by purely numeri-
cal methods such as finite difference (finite elements) [1].
These are very expensive in computer time, however, and
extension to more complicated structures seems correspond-
ingly difficult. Approximate and quasi-analytical methods
have also been employed.
For some years, the effective dielectric constant (EDC) in
various forms has been the accepted approximation method
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Fig. 1. Geometry of the rib waveguide.

for the study of waveguides in millimetric and integrated
optics [2], [3]. In spite of its simplicity and ease of implemen-
tation, its limits are now well appreciated. In 1981 transverse
resonance and network methods were combined in studying
dielectric guides [4], [5]. In 1984 the image guide problem
was approached by transverse resonance diffraction (TRD)
[6]. Since then, transverse resonance has been formulated for
the rib guide in approximate form [7] and in more rigorous
hybrid form [8] by using mode matching at the transverse
step discontinuity (x = 0 in Fig. 1). In these approaches, the
problem is seen as one of diffraction by a transverse step
discontinuity, wherecupon transverse resonance is employed
to derive the propagation constant.

As in a longitudinal step discontinuity problem, direct
mode matching does not take into account the true diffrac-
tion field at the step and suffers from well-known drawbacks,
particularly when a continuum is involved. This problem is
not too serious in the LSE case, where the field is regular at
the transverse step discontinuity. Correspondingly, all rigor-
ous methods tend to yield more or less accurate values of the
propagation constant. It is, however, more serious in the
LSM case. For both polarizations, 90° and 270° dielectric
corners are at the root of the nonseparability of the problem.
In the LSM case in particular, they have an important effect
on the field distribution at the plane of the transverse step
(see Fig. 4). This aspect has received little attention but is,
however, the key to an efficient solution.

In this contribution we shall derive a TRD solution of the
rib in the pure LSE /L.SM polarizations. It is recognized that
the corners above cause the field to be essentially hybrid.
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However, for typical aspect ratios and low refractive index
differences, the hybrid content is minor, while the effect of
nonseparability (and singularity) of the field is a more domi-
nant feature. Moreover, restricting attention to the case of
pure polarization introduces a great simplification in the
analysis. This simplification is easily removed where re-
quired.

In solving the TRD problem, we will adopt a variational
formulation of the Rayleigh—Ritz type, i.e., one where we
adopt a single function trial field at the transverse step
discontinuity, including all known physical features of the
discontinuity. The choice of a single function trial field is
critical. For instance, using just the surface mode to the right
or left of the step is inaccurate because of its orthogonality
to the continuum.

A very convenient choice turns out to be the modal distri-
bution of a slab of height intermediate between those of the
rib and of the cladding layer, which we define as a transition
function. In the LSM case we include explicitly the proper
singularity of the E field at the corners. As a consequence of
the above prudent choice, it is possible to recover a scalar
dispersion equation yielding results for the propagation con-
stants and discontinuity fields which are at least as accurate
as those obtained by purely numerical methods, but with a
fraction of the required computer power/time. It is also
noted that the simple two-port transverse equivalent network
deriving from a single function trial field is a useful feature
with a view to extensions to more complex structures.

II. Even (To x) LSE ANALYSIS

The analysis starts from a knowledge of the complete
spectrum of an asymmetric slab waveguide in the y direction,
which includes the following.

1) Surface waves, of orthonormalized distribution e (y).
2) Air modes, of distribution ¢(y, p), where p is a contin-
uous wave number 0 < p <. Both so-called even and
odd waves must be included in view of the lack of
symmetry of the problem in the y direction. Where
necessary, these will be distinguished by the notation
®,i M= even, odd.
3) Substrate waves, o(y,0), 0 <o <v=_(e, — D"k,
The spectral expression of the y-directed Hertzian potential
7,(x,y) at each side of the step comprises all the above
contributions.
E, and H, constitute a pair of transverse fields at the
discontinuous interface x = 0. At each side of the step, these
are derived from the potential as

= (e,k3 +32)m(x,y).

(D

Ez(x’y)=jw/’1’08x77h(x=y) Hy
Upon use of spectral expression of the potential in (1), it is
possible to obtain an integral relationship of the type

E:(()’ y) =Z-L'Hy(07 y) (2)

where the kernel Z;(y,y’) of the integral operator Z, is
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given by the impedance Green’s function:

1 qg,tanqg.a

Z,(y,y)= es(¥) e (y")

jweg €.

fpv

tanh ya
(%)

v 7 tanh na

f 0—,2¢sb(y7o-)<psb(ylaa')
0 g

=[5
where ¥ denotes priricipal value. The wavenumber for bound
mode in x is given by

ki—p*—p*=—y? ki —
ql + B* =¢€,k3.

——— e, (v.0)e (¥, p)

(3)

+

B2—g2=—n?

In (3), we have implicitly assumed that just one surface
wave (in y), ¢ (y), may be supported by the slab waveguide
left of the step. A relationship analogous to (2) exists at the
right-hand side of the step, namely,

_EZ(O7 y)=Z~R.Hy(07y) (4)

where the Green’s impedance Zg(y,y’) has a form analo-
gous to (3), after due modification for the semi-infinite
region, namely,

1y
ZR(y7y,):j7€—(; :,_lps(y)lps(y,)

+Z)( dp ———= (v, ) ¥.(¥'p)

ah

—— by (v, o) (¥, o)
R

where g! = — jy/; corresponds to g, €, to ¢,, and ¢ to ¢ in
the region x > 0. With reference to F1g 1, it is noted that
¥(y) has the same form as ¢(y), where the appropriate
wavenumbers and “d” instead of “D” are used.

The continuity of the fields has been built into (2) and (4).
By adding them, we obtain the dispersion equation of the
waveguide in the form of an integral equation:

Z-H,(0,y)=0

(5)

-I-fda-

(6)
where Z =27, + Zg.

“Variational” Solution

In the course of a variational development, when choosing
expanding functions for the unknown field H(y)= H 0, y),
it is very advantageous to be able to capture most of the
solution with just one term, i.e., a first-order solution. The
discussion of the above section seems to suggest that a
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prudent choice for H may consist in taking the surface wave,
u, of a slab waveguide with core height d intermediate
between d and D (“transition function”):

For small steps, there would be little difference between
the spectra of the three guides; for larger steps, it seems
intuitively reasonable that an intermediate waveguide with
EDC €,=y/e,e, may provide a suitable “transition” be-
tween the two waveguides.

More precisely, the transition function u, overlaps the
spectra of both slabs. We seck to optimize the overlap with
¢, and ¢, where the latter exists, as the surface waves carry
most of the power. Consequently, we choose d so as to
minimize the error function:

e(d)=2-(P2+P/%)>0.

As it turns out, d resulting from this condition is but little
different from that corresponding to &, = /e €, .

It is noted that for d /D sufficiently small, no guidance is
present in the cladding slab and the above criterion breaks
down. From this point onward we extrapolate for d as a
function of d.

The evaluation of the overlapping integrals P and P’
between u, and the spectra to either side of the step is
facilitated by the following result, which is a particular case
of a much more general theorem for calculating the overlap-
ping of two solutions of the wave equation. In particular, we

have
r=f"

P = f+ Oou

e,—1 .9
Uspg dy == —e [“Jus% dy

e €

r —-d
up.d
—Ee'[—d Y5 dy

€
Y dy = p

and similarly for the remeiining overlapping integrals P(p)
and P, (o) with air and substrate modes respectively.

Let us assume the sclution H(y) of (6) to be known and
multiply this equation on the left by H(y), integrate over y,
and divide across by
4o Co 12
ot =|[Te ) H N @

. _® N '
Isolate then from Z,, as given in (3), and from Zj, given in
(5), the contributions of the surface waves at each side. The

following scalar dispersion equation then results:
’

q
—Stanqsa=zu+zsb+n2—s,— (7
e €e
where
fm B[ s [y anh (0) P2(0) + 7))
p=eb"0 1—
kg
1 v dO’ 2
Zg=— —z—[ntanh(na) 2(a)+ 7P, %(C")]-
€,790 - o
(szo)
(8)

Its transverse equivalent network interpretation is illustrated
in Fig. 2. In (8) and in this figure one recognizes four
contributions (all within a common factor 1/jwe,):
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Fig. 2. Equivalent network for the LSE case.
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Fig. 3. Eduivalent network for the LSM case.
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TABLE I
TypiCAL VALUES OF THE ORDER OF THE SINGULARITY NEAR
A DieLECTRIC WEDGE OF APERTURE 8 =17 /2,37 /2

2 1 ei—l)
€1 a=_eosT s
1 0
2 -0.107
3 —0.161
5 -0.216
10 \ —0.268
11.8336 -0.277
.20 —-0.299
100 —-0.326

i) The impedance of the surface wave under the rib,
represented by a short-circuited tratismission line of
electrical length g,a and characteristic 1mpedance
q;/ €,

ii) The 1mpedance of the air modes at both sides of the
junction as seen by the above surface wave, given by
z,

iii) The contribution of the substrate modes at both sides
of the junction as seen by the surface wave under the
rib, given by zg,.

iv) The contribution of the surface wave mode (if any), to
the right of the junction, i.e. a load of impedance
1/jweq v /€l with real y/ for a bound mode in the x
direction. This load is seen by the surface wave mode
under the rib through an ideal transformer:

P!

n=?s. 9

s

The representation given by (7) is quantitatively exact and "
enjoys variational properties. Although its accuracy depends
on an dctual knowledge of H, it is noted that H, being
transverse to the dielectric wedge along the z axis, is nonsin-
gular [9]. Hence, any reasonable assumption will lead to
relatively good results.

If, at this point, the small-step approximation is made:

= lvbs = H
then, by orthogonality, ihe contributions of air and substrate

modes vanish; i.e., z,=z4=0and n=1 in (7) and we are
reduced to the EDC calculation,
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Fig. 4.

E, component of the fundamental LSM mode for slab of heights d (curve A), d (curve B), and D (curve D)

compared with the trial field of the transition function (curve C).

It is worth remarking that even when the step is not small,
so that ¢, and ¢, may differ from each other and from H, P,
and P/ of (9) are both less than unity and their ratio is still
fairly close to unity. This fact explains the remarkable accu-
racy of the EDC calculation in the LSE case not too close to
cutoff, where the continuous spectra can no longer be over-
looked. The above observation is at the basis of a very
accurate first-order variational solution of the step problem.

III. EveEN LSM MobDESs

The even LSM modes (TM to v) of the rib waveguide are
obtained by placing a magnetic wall on the plane of symme-
try x =—a, by means of the Hertzian electric potential
a.(x,y). The pair of fields, transverse to x, to be used in the
analysis are E, and H, and these are derived from the
potential as

E, = (e k3 +2)m,(x,)

) H,=jwed 7,(x,y).

(10)

By a development analogous to that of Section I, we arrive

at the integral equation for the unknown E, field at the
interface x = 0:

Y-E,(0,y)=0 (11)

where

1 g, tang.a

Y(y’y,)= . -
Jopg €

os(¥)e (¥

(4

s
£ (D)) + Y5, 3) + Y35 | (12)

and

o]

va(y,¥") =7€) dp

s[tanh (ya)e(y,p)e(y',p)

T
+¢(y, )¢ (', 0)] (13a)
Yool ¥, ¥) = Eizfovda——na—z
k)
[tanh (na) e, (¥, p)e(y's 0)
+ g ¥, 0 ) (¥ )] (13b)

Again, by a development similar to that of Section II, one
deduces the scalar dispersion equation

n?

ds
—tang,a= ?ys’ +y,+ Ve

€ €

(14)

corresponding to the transverse equivalent circuits of Fig. 3,
which is the dual of Fig. 2. In the above equation (14), y,,
Ve, and n? are defined analogously to (8) and (9), respec-
tively, in terms now of the unknown transverse electric field
at the interface E,(0,y)= E(y) and of the wavenumbers
appropriate to the TM case. It is noted, however, that in
contrast to the LSE case, E transverse to a dielectric wedge
is singular [9]. Hence, y =d and y = D are singular points,
as further discussed in the following section, and an appro-
priate choice of E has more bearing on the accuracy of
solution,

The second feature of (14) is, in fact, its close resemblance
to (7), which is a dispersion equation for a TM line in x.
According to the standard EDC procedure, however, the
transmission line representing propagation in the x direction
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TABLE 1I
PARAMETERS OF THE SEMICONDUCTOR RiB WAVEGUIDE STRUCTURES
‘WHicH HAVE BEEN ANALYZED
Rib Guide
Structure ny n, ny D{(um) d(pm) 2a(um) A(um)
1 3.44 335 1.0 1 varying 3 1.15
2 344 3.40 1.0 1 varying 3 1.15
3 3.44 3.34 1.0 1.3 0.2 2 1.55
4 3.44 3.36 1.0 1 0.9 3 1.55
5 3.44 3435 1.0 6 3.5 4 1.55
6 3.4406 3.4145 1.0 1.5 varying - 3 1.15
TABLE III
CoMPARISON OF MODE INDICES FOR STRUCTURE 1
TRD Without .
d EDC Continuum TRD with Continuum Finite Element [12]
(B/ ko)’ —n}
wm Bk B/ko B/ky V=t B/ ko
ny=—nz
0.1 — — 3.406332986899 0.62282131 3.40693
0.2 — — 3.406453177728 0.62416126 3.40708
0.3 — — 3.406715746213 0.62708867 3.40725
0.32 3.407806396  3.40642431
0.4  3.407890320  3.40773878  3.406976578049 0.62999694 3.40746
0.5 3.408093452  3.40807870  3.407276081276 0.63333667 3.40770
0.6 3.408359528  3.40835496  3.407684950229 0.63789640 3.40808
0.7 3.408695221  3.40869350  3.408164053097 0.64324008 3.40856
0.8 3.409144402  3.40914510  3.408818491485 0.65054058 3.40914
0.9  3.409839630  3.40984019  3.409724754287 0.66065259 2.40979
for an LSM mode ought to be of the pure TE type. This 3.m8 ' T T T
apparent incongruity is explained by noting that in the EDC
approximation one uses a. separable potential of the type 3.417 ) r
f(y)e™%:* in each region. Then, one has
YTE _ Hz _ wEOErkx _ Erkx 3.416 | b
T 2 2 :
E, Erko_ky €,
. . «pe . . 3.415 .
Only if k, = 0 or the identification €,(y) = ¢, can be made is "
the characteristic admittance of a TE wave recovered from ° /
the above equation. It is, therefore, fair to say that while in 3.414 4
the LSE case the EDC is the most basic level of approxima- /
tion to the rigorous dispersion equation as obtained from
. . . 3.413 F -1
transverse resonance diffraction, in the LSM case stronger Q/‘
approximations are required. It is consequently to be ex- A 9/9/
pected that the EDC approximation in the LSM case will be 3.4124}_.4/ :
further removed from the accurate solution than in the LSE
case. 3.411 1 1 L t
0.2 0.4 0.6 0.8 1
d pm

Edge Singularities: First-Order Variational Solution for E,

We shall now rigorously solve integral equation (11) by
means of a first-order variational approach, taking into ac-
count the proper singularities of the transverse electric field
at the dielectric corners y = D and y =d of Fig. 1. It is well
known [9] that the transverse fields at a dielectric wedge of
aperture 8 between dielectrics €; and 1 are singular like r®,
where r is the distance from the wedge and a(—1 < a <0)is
given by the lowest eigenvalue of the transcendental equa-
tion

€1

1
€1+1

sin[(a¢+1)7]+ sin[(a+1)(6—m)].

Fig. 5. Normalized propagation constant for the fundamental LSE
mode as a function of cladding height. n, = 3.44; n, =3.40; n;=1.0;
A=1.15 um; 2a =3 pm; —present analysis; A VFEM analysis (ref [1])
X SVFDM analysis (ref. [13]).

For 0 =1 /2 (corner y = D of Fig. 1) and 6 =37 /2 (y =d)
the order of the singularity is the same and is given by

|-

161_1
261+1
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TABLE 1V
COMPARISON OF MODE INDICES FOR STRUCTURES 3, 4 AND 5

Finite Element /Difference

EDC TRD Analysis [14] [13]
Rib Guide Technique (Present Analysis)  FD(1) FD(2)
Structure B /ky 3.390322368 3.388690 3.3906177 3.3912917 3.3869266
3 v 0.4832477 0.5025 0.5092 0.4655926
Structure B /k, 3.395478249 3.3953275 3.3951666 3.3954298 3.3954405
4 v 0.4386987 0.4367 0.4400 0.4401
Structure B /k, 3.437327385 3.4368203 3.4368425 3.4368635 3.4368112
5 v 0.3638981 0.3683 0.3725 0.3621
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Fig. 6. H, and E, field components of the fundamental LSE mode plotted as the magnitude values over transverse guide
section.

Typical values of o« are reported in Table 1. For e; =10,
a = —0.28, which is a nonnegligible singularity. The typical
shape of the true diffraction field at the interface x = 0 is the
type shown qualitatively in Fig. 4.

Also, a finite jump takes place at the diclectric interface
y =0, common to both sides of the step. In order to obtain
an accurate variational expression of the lowest possible
order, all the above features ought to be built into the trial
field.

We used two forms of the trial field involving a transition
function where the value of d is determined as for the LSE
case. The first was of the type of a product of a T™M
transition function, %, /¢,, times a term describing the singu-
larity, namely

uy(y)
.(y)

E(y)=E\0,y) = (15)

+
ly —d|%ly — DI*

where K is a variational parameter that minimizes the func-
tional (see (12)):

Y={E,YE)
1 gs ligz
=- —~—tan(qsa)P52+—,—75’+ya+ysb (16)
JWHq €, €,

In view of the relatively complicated nature of (15), the
scalar products required in (16), such as

need to be evaluated numerically. The above choice (15),
however, produces accurate results, which are discussed in
the following section.
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TABLE V

Comparison oF MopaL INpices ForR THE LSM CaSE oF STRUCTURE 2

Present Analysis

Present Analysis

Finite Difference

253

With Singularity Without Singularity Method [13] EDC Technique
d Bk, B/k B/k B/k
pum  Using Eq. (15) Using Eq. (17)
0.1 3.410202528445 3.4102127 3.410083534325 3.41060 —
0.2 3.410288256175 3.4102402 3.410091441092 3.41073 —
0.3 3.410457938360 3.4102597 3.410119617058 3.41092 o
0.4 3.410678050156 3.4107675 3.410268973640 341117 —
0.5 3.410963039520 3.4112158 3.410925733227 3.41150 —
0.6 3.412174130192 3.4118191 3.411380321540 3.41190 3.412707329
0.7 3.412472296772 3.4121408 3.411476035071 3.41241 3.412928581
0.8 3.412978578792 3.4128545 3.412496513103 3.41303 3.413308144
0.9 3.413801442506 3.4135775 3.413784847349 3.41385 3.413937569
TABLE VI
CowmparisoN oF MobaL INpices FOrR LSM ANALYSIS OF STRUCTURE 6
TRD Analysis (Present Analysis) TRD Analysis (Present Analysis)
with Singularity Without Singularity EDC
d Bk B/ ko B/ko
pm Eq. (15) Eq.(17)
0.1 3.423002125351 3.4230844 3.422931208 _—
0.2  3.423002226451 3.4231136 3.42293372 —
0.3 3.423003228562 3.4233329 3.42293647 —
0.4 3.423073140853 3.4234474 3.42296027 —
0.5  3.423218060410 3.4235177 3.42304718 —
0.6  3.423488390139 3.4237593 3.42312348 —
0.7  3.423981395150 3.4239557 3.42316368 —
0.8 3.425114321485 3.4243814 3.42318807 3.42567790
/ 0.9  3.425136486940 3.4244065 3.42321265 3.425839424
1.0 3.425393083153 3.4247512 3.42340634 3.426036835
1.1 3.425747334405 3.4252561 3.42390088 3.42627814
1.2 3.426220821181 3.4257251 3.42506294 3.426573753
1.3 3.426766377948 3.426515 3.42646813 3.426946640
14 3.427404668557 3.4272225 3.42739956 3.427455902

In order to avoid the above inconvenience also realizing
that the effect of each singularity in this problem is well
localized to a small neighborhood of the singular corner
itself, we used a second trial field, given by
E = /Te—vo(y—t?)(y ~D)*,

Y y>D

1 _ . u -
—Ae"yo(y_d)(D—y) , d<y<D

€
lj_cos(%yy—tz)( o) D-d\* P P
=— — = = - = <Yy <
& cos(k,d—) i—d)| - Y
1 _cos(k,y—o JD—d “
1 peoslky ‘ﬁ)(d—y) 2%, o0<y<d
€ COS(kyd—(//) d—d
I/T cos ¥ 7oy D-d\" 0 (17)
=4 e V2V J X ——— <
€ cos(kyd—~¢)e d-d|’ y
where
- - - Yo
tan(kyd—w)=el——
b
- € Y2
tanw—e—zky.

We note, in fact, that the above form (17) takes into account
each of the two singularities at y =d, D one at a time and
includes the dielectric jump at y = 0.

Moreover, it is physically clear that no other discontinuity
occurs between the two singularities at y = d, D. Hence, we
assume a continuous function in this interval. For y > D, we
include the effect of the singularity of y = D, whereas the
dielectric constant is that of the “air region” above the rib.

The shape of the trial field (17) is compared in Fig. 4 with
those of the slab mode in the rib, that of the cladding region,
and that of the transition function #s /e, without inclusion
of the singularities for a typical cross section. From the
above figure, we note the nonnegligible, but well localized,
effects of the two singularities, whereas us/e, is seen to
have features intermediate between those of ¢, and ¢,
according to the very concept of transition function.

The advantage of expression (17) with respect to (15) lies
in that fact that scalar products such as P, can be cast
analytically (see the Appendix) in terms of incomplete gamma
functions. The latter are straightforward to evaluate numeri-
cally in rapidly converging series form. For large values of
the argument, in fact, the series reduces to a’single term.
This analyticity of the “scalar products” results in far greater
numerical efficiency of the latter trial field, although the
actual values of the propagation constants obtained in the
two cases are very similar,

IV. NumericaL ResuLTS

To demonstrate the application of the theory developed in
the previous section and the effectiveness of the concept of
the transition function, we investigated the propagation
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Fig. 7. Normalized propagation characteristics for LSM modes as a
function of rib width for three different slab heights. n; = 3.4406,
n,=3.4145,n;=1.0, A=1.15 pm.
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modes of a rib guide whose parameters are illustrated in
Table II.

A. LSE Case

In Table I1I, we report results of modal indices for struc-
ture 1 where the thickness of the rib (D) is kept constant
while that of the cladding layer d is varied from 0.1 to 0.9.
Results obtained by the standard EDC are given in column 2
and compared with those obtained by the above analysis,
column 3, but neglecting the effect of the continuum at
either side. It is noted that the EDC approximation, as well
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Fig. 8. Normalized propagation constant for the fundamental LSM
mode as a function of rib height for different rib widths. n = 3.4406,
n,=3.4145, n;=1.0, A=1.15 pm.
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E, field components of the fundamental LSM mode plotted as the magnitude values over transverse guide section.

as that of neglecting the continuum, breaks down for d < 0.3
um. Column 4 reports present results valid for any value of
d. These are compared with column 6, the values obtained in
[12] by finite element analysis, for varying values of d.

For a slightly different structure (structure 2), n, = 3.40,
our results are compared with those of the semivectorial
FDM analysis [13] and those of vectorial FEM [1] in Fig. 5.
Differences, even for large steps, are seen to be minimal.
The present results, however, were obtained with a relatively
modest computer power effort, typically a minute or two on
a mainframe. Had the appropriate library routines been
available, even a desktop would have been adequate to the
task.
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Results on three additional guiding structures (structures
3,4,5), given in Table IV, are found to be in excellent
agreement with those of [13] and [14], obtained using the
finite element method. Fig. 6 gives a 3-D plot of H, and E,.
E, is not directly involved in the solution of the integral
equation but is theoretically singular at x =0, y = D. Having
assumed a nonsingular test function H,, this feature does
not appear. The figure shows, however, the proper disconti-
nuity on the side of the rib at x =0.

B. LSM Case

The LSM case is complicated by the presence of the
singularities, as discussed in the previous sections. A compar-
ison between the results obtained using the two trial fields
discussed in the previous section for structures 2 and 6 is
reported in Tables V and VI respectively. Differences are
seen to be minimal, but using the second form is consider-
ably more economical in computer time, as anticipated. Fig.
7 shows the variation of normalized modal indices with rib
width for the fundamental LSM mode for three different rib
heights. Fig. 8 shows the variation of normalized modal
indices for the fundamental LSM mode with rib height for
different rib widths. The accuracy of the method is validated
by comparing the results with the results of [13] in Table V,
where differences are seen to be minimal. Qur results in Fig.
7 are also in close agreement with the results presented in
[1]. This confirms the assertion made in the introduction that
for aspect ratios not too close to unity, the singular behavior
near the corner, not the hybrid nature of the field, is the
dominant feature of the problem. Finally, a 3-D plot of the
E, field component is provided in Fig. 9, where the presence
of the singularity is clearly visible.

V. CONCLUSIONS

In this paper, we present a semianalytical treatment of the
LSE /LSM polarized rib waveguide based on a variational
treatment of the transverse step discontinuity problem of the
Rayleigh—Ritz type (a single function trial field) and trans-
verse resonance (transverse resonance diffraction). All known
relevant features of the solution are incorporated in the trial
field, yielding highly accurate numerical results with modest
computer effort. Moreover, a scalar, analytical dispersion
equation is recovered which offers some insight and allows
extension to more complicated transverse cross sections.

APPENDIX

In order to give the expressions of P, P’ -- -, for the sake
of convenience it is necessary to define the following quanti-

ties: B
D-d\" _ A
= | — B=—F——
d—d cos(Kyd—w)
= Acos A
~ cos(Kyd — ¢) ~ cos(hD — )
Acos g 3 A,cos(hD —3,)
~ cos(hD —§) ¢ Ccos
cos @, COS argy,
= = B
Ce Aecosa As ‘/g =Ve2 oS By

A e

cos (hD — og,).

A, B, C', A, B,,Cl, A%, B!, and C! are relative to the slab

of height d and are similar to the unprimed values. If the
following functions are also defined:

n=g—hd §=5—k,d
Fy(n,&,d,h) =tcos(n+¢)-C(d,0,h+k,)
—sin(n+£)-S,(d,0,h+%,)
+cos(n—¢£)-C(d,0,h—k,)
—sin(n—¢)-5,(d.0.h— )}
Fy(,h) =cos(§ — hD) - C,(D —d, — ¥y, h)
—sin(g—hD) S, (D —d,—¥,,h)
F3(J,}y) = cos(zz -%yd)-Cﬂ(cf— d,p,%y)
+sin(§ —%,d)-S,(d—d,p.k,)
cos[a,+p(D—-d)]-Cd—d,—~vy,p)
+sin[a, + p(D —d)]-S,(D—d,~vg,p)
the Fourier coefficients of the field expansion can be written:
C-C-Td*
- & (%, +0)
B-B-T

F4(at7p) =

+ [Fl(n’§7d7h)+Fl(_n7_gﬁg_dah)]

— pra B ~r
+ EVU(D_d)[E—FZ(a,h) + AEM(p + ‘YO’O) ‘
1

The wavenumber &, p,o and the phase shift & are referred
to the TM fundamental mode of the slab of height D.

2 C,C-Td* (¥,cosa,—osina,)

P(P) 62 (y2+0_ )
+\/§A [Fy(n,&,d,h)
+F(—n,—¢,d—d,h)]

. >
+ = e 7 P-D 4 Fy(F,,h) + B,[cos a,  E, (7, p)
o

—sin a, H,(%0,p)] |-

The wavenumber ki, o, p and the phase shifts «,, «,, and @,
are referred to the TM even continuous air spectrum of the
slab of height D.

Py(p), relative to the TM odd continuous air spectrum, is
obtained by replacing «,,$,,«, With aq+7 /2, oo+ 7 /2,
a, + 1 /2, respectively.

osinag,)

\/7/1 -C-Td® (7, cosag —
sb(o-) (,yz+0_2)
\/‘B BT
+ J—
T €
+ F(—n—&d—d,h)]

2 | B -
er/ - e—YO(Df@L—SFz(@sb,h) +CyE (p+7,,0)|.
1

[Fl(n’gad’h)
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The wavenumber o, /1, p and the phase shifts oy, and ¢, are
referred to the TM continuous substrate spectrum of the
slab of height D:
C'-C-Td* B
’— +
T oe(¥,+0) €

F —_— j—
[B'Fi(n,&,d,h) + A F3(§, )]
1

_ R I | -
+ A’ e utpIDFpdTyod, L_CM(D —d, = (% +),0)
1

+E(vo+p,0)

The wavenumbers 4, p, o are referred to the TM fundamen-
tal mode of the slab of height d:

[2 C!-C-Td* (y,-cosa, —osina,)
Pe,(p): ; - ‘

€, (72""72)

2 BT
+1/ = — [ AL Fy(n.£.d,h)
o El

+ Be/'Fl(at’ —g,J— d,p)]

2 _ {1
#y 2 B i)
T €

+cos[p(D—d)+a,] E(¥,p)

—sin [p(D -d)+a,] 'H“('Vo,p)}.

The waveniimber 4,0, p and the phase shifts «,, «,. and ¢,
are referred to the continuous TM even air spectrum of the
slab of the height d.

Pi(p), relative to the TM odd continuous air spectrum, is
obtained by replacing «,,y,,«, with ag+ 7 /2, o+ 7 /2,
a, + 1 /2, respectively:

o [2 A5-C-Td* (7, cosay,—osinay,)
(o) = - <) (7§+az)

2 BT _
+\ = — [ B Fi(n.&.d.h) + C/F($.%, )|
T €

{2
-+ — e_(P“’?n)D"'Pd""?Ud.C/
s

a

1 _
'[E—CM(DACL “(P+7o)a0)
+ E#(p+vo,0)]-

The wavenumber o, &, p and the phase shift o, are referred
to the TM continuous substrate spectrum of the slab of
height d.

The functions C,(u,8,8) and S,(u,B,8) (u=1+a) are
combinations of incomplete gamma functions [10, ch. 3.94

and ch. 8.35], which, in series representation, can be written

(—1)”(u~\/EZ¥)"

n!l(u+n)

Cu,B,8)=u* )
n=0

0
~Cos | n-arctan —
B

and, for large values of u\/m , in the asymptotic form
2, a2\ R/2 3 s
C>(u,B,8)=T(n)(B*+6?) cos ,uarctanE —ute

M1 (—1)"T(1—u+m)-cos

)y T
r(1-p)(uyp*+0°) -

m=0
S (u,B, o) is obtained from C, by replacing u* and cos(-)
with — u* and sin(-), respectively, and S;‘S(u,ﬁ,é) from the
corresponding C3* by replacing cos(-) with sin(-). H,(B,8)
and E, (B, 8) are given by [10, ch. 3.944.5 and 6].

o
(m +1)arctan B + u
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